
The Common Component Architecture for Scalable
Scientific Software Engineering

Kosta Damevski

Department of Mathematics and Computer Science
Virginia State University

September 22, 2009

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 1 / 40



Outline

1 Motivation: Why Components?

2 Overview of the Common Component Architecture (CCA)

3 New Tools Improve Software Usability and Quality

4 Selected Applications

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 2 / 40



Outline

1 Motivation: Why Components?

2 Overview of the Common Component Architecture (CCA)

3 New Tools Improve Software Usability and Quality

4 Selected Applications

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 3 / 40



Why Components?

The task of the software development team is to engineer the illusion
of simplicity [Booch]

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 4 / 40



Complexity in Scientific Software Development

At least 41 different Fast Fourier Transform (FFT) libraries
I see: http://www.fftw.org/benchfft/ffts.html

Many (if not all) have different interfaces
I Different procedure names and different input and output

parameters

For instance...
SUBROUTINE FOUR1(DATA, NN, ISIGN)

Replaces DATA by its discrete Fourier transform
(if ISIGN is input as 1) or replaces DATA by NN
times its inverse discrete Fourier transform
(if ISIGN is input as -1)...

By using components, a common interface would allow plug and
play FFT libraries

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 6 / 40



Background

High-performance computational science is now widely
recognized as critical to scientific discovery.
Researchers face numerous challenges to exploiting emerging
leadership-class systems for multi-model simulations at extreme
scale

I Scalability in problem size/complexity, resources (CPUs, memory,
I/O)

I Also software size/complexity/rate of change, human factors

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 7 / 40



Scientific Software Development

Software is a team effort
I Geographically distributed
I Multidisciplinary

Software must be robust, but flexible
I Much larger than any single contributor can deeply understand
I Much longer lifetime than specific platforms, contributors
I Allow evolution of algorithms, scientific focus

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 8 / 40



Components Help Manage Software Complexity

Extend object-oriented ideas
(abstraction, encapsulation,
separation of concerns,
modularity) with
composition

Components encapsulate functionality which is exposed to the
outside through well-defined interfaces
Applications formed by composing components based on their
interfaces (type matching)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 9 / 40



Benefits of Components for Scientific Computing

Tool to organize large, complex software systems in terms of
smaller modules of manageable scale
Components map well onto individuals or small groups of
developers
Interfaces between components map well onto interfaces between
development groups, geographic location, scientific specialty,
programming language preferences, etc.
Goal: Enable the scientist to do more science and less software
development

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 10 / 40



The Common Component Architecture (CCA)

A component architecture specially designed for
high-performance scientific computing

I “Commodity” approaches not sufficient

Supports parallel and distributed computing
Supports mixed language programming

I Currently: C, C++, Fortran, Java, Python

Support for platforms, data types, etc. important to HPC
Support for legacy software

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 11 / 40



Outline

1 Motivation: Why Components?

2 Overview of the Common Component Architecture (CCA)

3 New Tools Improve Software Usability and Quality

4 Selected Applications

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 12 / 40



Basic CCA Concepts and Terms

Components
Units of software
development/functionality
Interact only through
well-defined interfaces
Can be composed into
applications based on their
interfaces

Frameworks
Hold components while
applications are assembled
and executed
Control the connections of
ports
Provide standard services to
components

Ports
The interfaces through
which components
interact
Follow a provides/uses
pattern

Screenshot of an application in the Ccaffeine framework GUI

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 13 / 40



Basic CCA Concepts and Terms

Components
Units of software
development/functionality
Interact only through
well-defined interfaces
Can be composed into
applications based on their
interfaces

Frameworks
Hold components while
applications are assembled
and executed
Control the connections of
ports
Provide standard services to
components

Ports
The interfaces through
which components
interact
Follow a provides/uses
pattern Screenshot of an application in the Ccaffeine framework GUI

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 13 / 40



Basic CCA Concepts and Terms

Components
Units of software
development/functionality
Interact only through
well-defined interfaces
Can be composed into
applications based on their
interfaces

Frameworks
Hold components while
applications are assembled
and executed
Control the connections of
ports
Provide standard services to
components

Ports
The interfaces through
which components
interact
Follow a provides/uses
pattern Screenshot of an application in the Ccaffeine framework GUI

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 13 / 40



The CCA Specification is the ’A’ in CCA

23 interfaces define rules and responsibilities for components and
frameworks
CCA places a small conceptual burden on users

Interfaces a typical user must
understand

gov.cca.Port
gov.cca.Component
gov.cca.Services
gov.cca.CCAException

Minimum interfaces required
to implement a CCA
framework

gov.cca.AbstractFramework
gov.cca.Services
gov.cca.ComponentID
gov.cca.TypeMap
(and a few exception
interfaces)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 14 / 40



CCA Forum Governs The CCA Specification

Formed (in 1997) as a grass roots effort by individuals from:
I Several DoE labs (Los Alamos, Sandia, Lawrence Livermore, Oak

Ridge)
I NASA
I Indiana University
I University of Utah

Forum membership has expanded to a number of private and
public institutions

I Funded by both SCIDAC 1 and 2
Quarterly meetings

I Attendance in the last two out of last three meetings is required for
voting

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 15 / 40



CCA Software Responsibilites

Implemented By CCA Users
Interfaces (ports) for
components
Components
Applications (assemblies of
components)

Provided By CCA
CCA Specification

I Interfaces for standard
services

I Implementations of
standard services (as
components)

Scientific Interface Definition
Language (SIDL)
Frameworks

I Ccaffeine, Decaf, SCIJump
(SCIRun2), XCAT

Component Development
Tools

I Babel, Bocca, OnRamp

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 16 / 40



Component Lifecycle
1 Implement component

I Express ports and component in a Scientific Interface Definition
Language (SIDL)

I Compile SIDL with Babel compiler
I Provide implementation

F The component expresses the ports it provides and the ones it uses

2 Instantiate component in a framework
I Upon instantiation, each component has its ports discovered by the

framework
3 Connect components (composed) to form an application

I Often done through the framework’s GUI
4 Instruct the application to begin

I Begin execution at component that provides a special port called a
GoPort

I After the instruction to begin, the rest of the application’s control
flow is handled by the components themselves

I Components communicate via method invocation

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 17 / 40



Component Lifecycle
1 Implement component

I Express ports and component in a Scientific Interface Definition
Language (SIDL)

I Compile SIDL with Babel compiler
I Provide implementation

F The component expresses the ports it provides and the ones it uses
2 Instantiate component in a framework

I Upon instantiation, each component has its ports discovered by the
framework

3 Connect components (composed) to form an application
I Often done through the framework’s GUI

4 Instruct the application to begin
I Begin execution at component that provides a special port called a

GoPort
I After the instruction to begin, the rest of the application’s control

flow is handled by the components themselves
I Components communicate via method invocation

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 17 / 40



Component Lifecycle
1 Implement component

I Express ports and component in a Scientific Interface Definition
Language (SIDL)

I Compile SIDL with Babel compiler
I Provide implementation

F The component expresses the ports it provides and the ones it uses
2 Instantiate component in a framework

I Upon instantiation, each component has its ports discovered by the
framework

3 Connect components (composed) to form an application
I Often done through the framework’s GUI

4 Instruct the application to begin
I Begin execution at component that provides a special port called a

GoPort
I After the instruction to begin, the rest of the application’s control

flow is handled by the components themselves
I Components communicate via method invocation

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 17 / 40



Component Lifecycle
1 Implement component

I Express ports and component in a Scientific Interface Definition
Language (SIDL)

I Compile SIDL with Babel compiler
I Provide implementation

F The component expresses the ports it provides and the ones it uses
2 Instantiate component in a framework

I Upon instantiation, each component has its ports discovered by the
framework

3 Connect components (composed) to form an application
I Often done through the framework’s GUI

4 Instruct the application to begin
I Begin execution at component that provides a special port called a

GoPort
I After the instruction to begin, the rest of the application’s control

flow is handled by the components themselves
I Components communicate via method invocation

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 17 / 40



A Simple Integration Example

Four components (Driver, Integrator, Function and
RandomNumberGenerator) are composed (in the Ccaffeine GUI)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 18 / 40



Express Interfaces in SIDL

SIDL for Integration port
package integrator version 0.1 {

interface IntegratorPort extends gov.cca.Port
{

double integrate(in double lowBound,
in double upBound,
in int count);

}
}

Scientific Interface Definiton Language (SIDL) is used to express
component interfaces

I Loosely based on the CORBA IDL

SIDL is compiled by the Babel (LLNL) compiler

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 20 / 40



A General Idea of Component Implementation

Commonly Used Methods
addProvidesPort

I Component informs the framework about a port it provides
registerUsesPort

I Component informs the framework about a port it uses
connect

I Connects a provides to a uses port (often done by the framework
through a UI)

F Port compatibility is checked

getPort
I Once two ports are connected, a component with a uses port can

use this method to get a handle to the provides port
F Handle is used to make procedure/method calls

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 21 / 40



Babel is a Foundational Part of the CCA

Babel provides...
I Fast inter-language communication

for C, C++, Fortran, Python, and
Java

I Consistent OO type system
I Support for distributed

communication via Remote
Method Invocation (RMI)

I Interface contract specifications

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 22 / 40



Frameworks Manage Component Instances

Able to create and compose components into an application
Provide components a discovery mechanism, and a few useful
services
Frameworks interfere minimally in the execution of a component

I Scale up easily to thousands of component instances
As long as a framework is based on the CCA specification, it can
always add more functionality

I Ccaffeine (Sandia) provides a GUI and support for SPMD parallel
components, and is the only framework that is at “production” level

I SCIJump (UofU, VSU) provides similar features, but parallel
component concept is more MPMD

I XCAT (IU, BU), Decaf (LLNL)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 23 / 40



Support for Distributed and Parallel Computing in CCA

Distributed
Babel provides the basis for distributed computing

I Several wire protocols available

Some frameworks support distributed components (SCIRun2,
XCAT)

Parallel
Component model allows for MPI (or PVM, etc.) based
components
CCaffeine framework manages parallel components in a SCMD
fashion
Parallel coupling support is available through components
(InterComm, GlobalArrays)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 24 / 40



CCA Toolkit
Goal:Create a repository of high-quality, high-performance
components that enable scientific developers to perform rapid
prototyping, and access widely used libraries in component form

Access to diverse linear solvers developed at different institutions:
hypre, MUMPS, PETSc, SPARSKIT, SuperLU, Trilinos, ...
InterComm (UMD) component provides parallel model coupling
capabilies
Performance monitoring: Tuning and Analysis Utility - TAU (UO),
PerfExplorer (UO)
Numerical optimization: Toolkit for Advanced Optimization - TAO
(ANL)
Global Array (PNNL) provides a global-view parallel programming
model
Parallel Cartesian Grid (SNL): Simple 2d Cartesian mesh
(a number of toolkit components are still under development)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 25 / 40



Outline

1 Motivation: Why Components?

2 Overview of the Common Component Architecture (CCA)

3 New Tools Improve Software Usability and Quality

4 Selected Applications

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 26 / 40



New Usability Tools Make CCA More Attractive

Bocca
OnRamp
Babel’s Contracts
Dimensional Units

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 27 / 40



Bocca Automates Component Creation

Bocca can generate operational component code because
component interoperability, connectivity, and modularity is
independent of function
This means you only need to provide the implementation

I Given an implementation language, a name, and port types, a
“shell” component can be generated

I Can import implementations from other components, other code

Similar in spirit to Ruby on Rails for web applications

Bocca Team
Boyana Norris (ANL)
Ben Allan (SNL)

Wael Elwasif (ORNL)
Rob Armstrong (SNL)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 28 / 40



OnRamp: Semi-Automatic Wrapping of Legacy Code
into Components

OnRamp converts existing traditional code into CCA components,
using a combination of:

I Source code analysis
I Source code annotations
I Code generation tools

Overcomes a major practical barrier to CCA adoption
I Manual wrapping is tedious, and “one-way”

OnRamp Team
Geoff Hulette (UO)
Ben Allan (SNL)

Matt Sotille (UO)
Rob Armstrong (SNL)
Boyana Norris (ANL)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 29 / 40



OnRamp Use Cases

Simplifies generation/maintenance
of CCA bindings for large (legacy)
code bases
Allow actively developed codes to be
used in traditional and component
environments simultaneously
Provides a CCA “meeting place” for
developers of disparate codes
wishing to collaborate
Currently at “alpha” stage

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 30 / 40



Interface Contracts

A set of rules that checked at runtime to ensure correctness
I Preconditions, postconditions and invariants
I A way to capture runtime application errors

F Especially useful when components are developed by separate
groups

I Fully implemented in Babel

A way to add more semantic information to an interface expressed
in SIDL
Research challenge: adapting contracts to HPC requires that their
performance impact be reduced

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 31 / 40



Offloading Contract Enforcement

Goal: Develop a system to offload
executable interface contracts in
order to reduce their overhead and
increase their acceptance in the
high performance computing
community

Offloading can greatly reduce contract overhead
But be careful, as contracts have to be copied to be offloaded
Best way is to be selective, only computationally demanding
contracts should be offloaded

Team
Kostadin Damevski (VSU)
Tamara Dahlgren (LLNL)

Hui Chen (VSU)

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 32 / 40



Dimensional Units at the Component Level

Ongoing research at a relatively early stage...
Expressing dimensional units (e.g. meters, seconds, newtons,
etc.) is not commonplace in scientific programming

I Big part of paper and pencil calculations
I Dimensional mismatch errors do exist in practice (e.g. Mars Orbiter)

Libraries targeted to certain programming languages do exist, but
none have gained wide acceptance
Observation: dimensional mismatch does not occur on the small
scale, but as a result of mistaken assumptions in combining code
from separate developers
Plan: add unit information to interfaces

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 33 / 40



Outline

1 Motivation: Why Components?

2 Overview of the Common Component Architecture (CCA)

3 New Tools Improve Software Usability and Quality

4 Selected Applications

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 34 / 40



FACETS Uses CCA Tools for First Integrated
Core-Edge Plasma Simulation

Framework Application for
Core-Edge Transport Simulations,
PI John Cary (Tech-X),
www.facetsproject.org
Integrated modeling of plasma core,
edge, and wall: prototype for Fusion
Simulation Project
Complex physics with different
dimensionalities

Use SIDL to express interfaces between components (core,
edge, wall)
Use Babel to integrate UEDGE code with core model in custom
FACETS framework

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 35 / 40



CFRFS Demonstrates Toolkit in 4th Order in Space
AMR Simulations

Computational Facility for Reacting
Flow Science, PI Habib Najm (SNL),
www.ca.sandia.gov/cfrfs
CFRFS has developed an extensive
CCA-based toolkit for simulation of
reacting flows with detailed
chemistry
Integrates contributions from many
researchers
Allows a wide range of simulations
to be created in plug-and-play
fashion

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 36 / 40



QCSAP uses Components to Enable
Interchangeability and Interoperability in Quantum
Chemistry

Quantum Chemistry Scientific
Application Partnership, PI Mark
Gordon (Ames Lab)
Representing major chemistry
software packages: GAMESS,
MPQC, NWChem
Using CCA to expose unique
capabilities of packages to allow use
by other packages
Extending scientific capabilities by
creating interoperable community
software

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 37 / 40



Summary

Component technology has been used widely to support:
I Decompose application into modular “pluggable” parts
I Provide an adequate basis for reuse
I Crearly separate interface from implementation

CCA applies this technology to high performance computing
I Support for scientific apps: parallelism, scientific types,

multidimensional arrays
I Low overhead
I Ample tool support
I Consideration for legacy code bases

More CCA info can be found at:
I http://www.cca-forum.org
I http://tascs-scidac.org
I http://www.cca-forum.org/dev

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 38 / 40



Acknowledgements

CCA Forum
I David Bernholdt, PI

DoE SCIDAC program
Xiaolin Li and Jim Jiao for inviting me

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 39 / 40



QUESTIONS?

Kosta Damevski (Virginia State University) Common Component Architecture September 22, 2009 40 / 40


	Motivation: Why Components?
	Overview of the Common Component Architecture (CCA)
	New Tools Improve Software Usability and Quality
	Selected Applications

